
Clipped from:
https://www.theatlantic.com/technology/archive/2017/03/aristotle-

computer/518697/?utm_source=msn#article-comments

The philosophers he influenced set the stage for the technological
revolution that remade our world.

Wikimedia / donatas1205 / Billion Photos / vgeny Karandaev / The
Atlantic

Like The Atlantic? Subscribe to The Atlantic Daily , our free weekday email
newsletter.

THE HISTORY Of computers is often told as a history of objects, from the
abacus to the Babbage engine up through the code-breaking machines of

World War II. In fact, it is better understood as a history of ideas, mainly
ideas that emerged from mathematical logic, an obscure and cult-like

discipline that first developed in the 19th century. Mathematical logic was
pioneered by philosopher-mathematicians, most notably George Boole

and Gottlob Frege, who were themselves inspired by Leibniz’s dream of a
universal “concept language,” and the ancient logical system of Aristotle.

Listen to the audio version of this article:Download the Audm app for your
iPhone to listen to more titles.

Mathematical logic was initially considered a hopelessly abstract subject
with no conceivable applications. As one computer scientist commented:

How Aristotle Created the Computer - The Atlantic
Monday, April 10, 2017 9:33 AM

 Info Page 1

https://www.theatlantic.com/technology/archive/2017/03/aristotle-computer/518697/?utm_source=msn#article-comments
https://www.theatlantic.com/technology/archive/2017/03/aristotle-computer/518697/?utm_source=msn#article-comments
http://www.theatlantic.com/newsletters/daily/
https://goo.gl/PzAKpg
http://bactra.org/notebooks/mathematical-logic.html

with no conceivable applications. As one computer scientist commented:

“If, in 1901, a talented and sympathetic outsider had been called upon to
survey the sciences and name the branch which would be least fruitful in

[the] century ahead, his choice might well have settled upon
mathematical logic.” And yet, it would provide the foundation for a field

that would have more impact on the modern world than any other.

The evolution of computer science from mathematical logic culminated in
the 1930s, with two landmark papers: Claude Shannon’s “A Symbolic

Analysis of Switching and Relay Circuits,” and Alan Turing’s “On
Computable Numbers, With an Application to the Entscheidungsproblem.”

In the history of computer science, Shannon and Turing are towering
figures, but the importance of the philosophers and logicians who

preceded them is frequently overlooked.

A well-known history of computer science describes Shannon’s paper as
“possibly the most important, and also the most noted, master’s thesis of

the century.” Shannon wrote it as an electrical engineering student at
MIT. His adviser, Vannevar Bush, built a prototype computer known as

the Differential Analyzer that could rapidly calculate differential equations.
The device was mostly mechanical, with subsystems controlled by

electrical relays, which were organized in an ad hoc manner as there was
not yet a systematic theory underlying circuit design. Shannon’s thesis

topic came about when Bush recommended he try to discover such a
theory.

“Mathematics may be defined as the subject in which we never know
what we are talking about.”

Shannon’s paper is in many ways a typical electrical-engineering paper,
filled with equations and diagrams of electrical circuits. What is unusual is

that the primary reference was a 90-year-old work of mathematical
philosophy, George Boole’s The Laws of Thought.

Today, Boole’s name is well known to computer scientists (many
programming languages have a basic data type called a Boolean), but in

1938 he was rarely read outside of philosophy departments. Shannon
himself encountered Boole’s work in an undergraduate philosophy class.

“It just happened that no one else was familiar with both fields at the
same time,” he commented later.

Boole is often described as a mathematician, but he saw himself as a
philosopher, following in the footsteps of Aristotle. The Laws of Thought

begins with a description of his goals, to investigate the fundamental laws
of the operation of the human mind:

The design of the following treatise is to investigate the fundamental laws
of those operations of the mind by which reasoning is performed; to give

expression to them in the symbolical language of a Calculus, and upon
this foundation to establish the science of Logic ... and, finally, to

collect ... some probable intimations concerning the nature and
constitution of the human mind.

He then pays tribute to Aristotle, the inventor of logic, and the primary
influence on his own work:

 Info Page 2

http://bactra.org/notebooks/mathematical-logic.html
http://www.ccapitalia.net/descarga/docs/1938-shannon-analysis-relay-switching-circuits.pdf
http://www.ccapitalia.net/descarga/docs/1938-shannon-analysis-relay-switching-circuits.pdf
http://www.dna.caltech.edu/courses/cs129/caltech_restricted/Turing_1936_IBID.pdf
http://www.dna.caltech.edu/courses/cs129/caltech_restricted/Turing_1936_IBID.pdf
http://www.mit.edu/~klund/analyzer/
http://georgeboole.com/boole/legacy/engineering/
http://www.gutenberg.org/files/15114/15114-pdf.pdf

influence on his own work:

In its ancient and scholastic form, indeed, the subject of Logic stands
almost exclusively associated with the great name of Aristotle. As it was

presented to ancient Greece in the partly technical, partly metaphysical
disquisitions of The Organon, such, with scarcely any essential change, it

has continued to the present day.

Trying to improve on the logical work of Aristotle was an intellectually
daring move. Aristotle’s logic, presented in his six-part book The

Organon, occupied a central place in the scholarly canon for more than
2,000 years. It was widely believed that Aristotle had written almost all

there was to say on the topic. The great philosopher Immanuel Kant
commented that, since Aristotle, logic had been “unable to take a single

step forward, and therefore seems to all appearance to be finished and
complete.”

All men are mortal.•

Socrates is a man.•

Therefore, Socrates is mortal.•

Aristotle’s central observation was that arguments were valid or not based
on their logical structure, independent of the non-logical words involved.

The most famous argument schema he discussed is known as the
syllogism:

You can replace “Socrates” with any other object, and “mortal” with any
other predicate, and the argument remains valid. The validity of the

argument is determined solely by the logical structure. The logical words
 — “all,” “is,” are,” and “therefore” — are doing all the work.

An object is what it is (Law of Identity)•

No statement can be both true and false (Law of Non-contradiction)•

Every statement is either true or false (Law of the Excluded Middle)•

Aristotle also defined a set of basic axioms from which he derived the rest
of his logical system:

These axioms weren’t meant to describe how people actually think (that
would be the realm of psychology), but how an idealized, perfectly

rational person ought to think.

Aristotle’s axiomatic method influenced an even more famous book,
Euclid’s Elements, which is estimated to be second only to the Bible in the

number of editions printed.

A fragment of the Elements (Wikimedia Commons)

Although ostensibly about geometry, the Elements became a standard
textbook for teaching rigorous deductive reasoning. (Abraham Lincoln

once said that he learned sound legal argumentation from studying
Euclid.) In Euclid’s system, geometric ideas were represented as spatial

diagrams. Geometry continued to be practiced this way until René
Descartes, in the 1630s, showed that geometry could instead be

represented as formulas. His Discourse on Method was the first
mathematics text in the West to popularize what is now standard

 Info Page 3

http://www.gutenberg.org/files/15114/15114-pdf.pdf
https://books.google.com/books?id=WJVYp0C0taYC&pg=PA36&lpg=PA36&dq=unable+to+take+a+single+step+forward,+and+therefore+seems+to+all+appearance+to+be+finished+and+complete&source=bl&ots=W4Lrt9I80J&sig=KpZlOd-Yc9brgTksIJJZcxUD-Mg&hl=en&sa=X&ved=0ahUKEwjeg8i1iLvQAhVH6IMKHTMXDMgQ6AEIHTAA#v=onepage&q=unable%20to%20take%20a%20single%20step%20forward%2C%20and%20therefore%20seems%20to%20all%20appearance%20to%20be%20finished%20and%20complete&f=false
https://en.wikipedia.org/wiki/Euclid%27s_Elements
http://www.storyofmathematics.com/17th_descartes.html

mathematics text in the West to popularize what is now standard

algebraic notation — x, y, z for variables, a, b, c for known quantities, and

so on.

Descartes’s algebra allowed mathematicians to move beyond spatial
intuitions to manipulate symbols using precisely defined formal rules. This

shifted the dominant mode of mathematics from diagrams to formulas,
leading to, among other things, the development of calculus, invented

roughly 30 years after Descartes by, independently, Isaac Newton and
Gottfried Leibniz.

Boole’s goal was to do for Aristotelean logic what Descartes had done for
Euclidean geometry: free it from the limits of human intuition by giving it

a precise algebraic notation. To give a simple example, when Aristotle
wrote:

All men are mortal.

Boole replaced the words “men” and “mortal” with variables, and the
logical words “all” and “are” with arithmetical operators:

x = x * y

Which could be interpreted as “Everything in the set x is also in the set
y.”

The Laws of Thought created a new scholarly field—mathematical logic—
which in the following years became one of the most active areas of

research for mathematicians and philosophers. Bertrand Russell called the
Laws of Thought “the work in which pure mathematics was discovered.”

Shannon’s insight was that Boole’s system could be mapped directly onto
electrical circuits. At the time, electrical circuits had no systematic theory

governing their design. Shannon realized that the right theory would be
“exactly analogous to the calculus of propositions used in the symbolic

study of logic.”

He showed the correspondence between electrical circuits and Boolean
operations in a simple chart:

Shannon’s mapping from electrical circuits to symbolic logic (University of
Virginia)

This correspondence allowed computer scientists to import decades of
work in logic and mathematics by Boole and subsequent logicians. In the

second half of his paper, Shannon showed how Boolean logic could be
used to create a circuit for adding two binary digits.

Shannon’s adder circuit (University of Virginia)

By stringing these adder circuits together, arbitrarily complex arithmetical
operations could be constructed. These circuits would become the basic

building blocks of what are now known as arithmetical logic units, a key
component in modern computers.

Another way to characterize Shannon’s achievement is that he was first to

 Info Page 4

http://www.storyofmathematics.com/17th_descartes.html
https://en.wikipedia.org/wiki/Arithmetic_logic_unit

Another way to characterize Shannon’s achievement is that he was first to
distinguish between the logical and the physical layer of computers. (This

distinction has become so fundamental to computer science that it might
seem surprising to modern readers how insightful it was at the time—a

reminder of the adage that “the philosophy of one century is the common
sense of the next.”)

Since Shannon’s paper, a vast amount of progress has been made on the
physical layer of computers, including the invention of the transistor in

1947 by William Shockley and his colleagues at Bell Labs. Transistors are
dramatically improved versions of Shannon’s electrical relays — the best

known way to physically encode Boolean operations. Over the next 70
years, the semiconductor industry packed more and more transistors into

smaller spaces. A 2016 iPhone has about 3.3 billion transistors, each one
a “relay switch” like those pictured in Shannon’s diagrams.

While Shannon showed how to map logic onto the physical world, Turing
showed how to design computers in the language of mathematical logic.

When Turing wrote his paper, in 1936, he was trying to solve “the
decision problem,” first identified by the mathematician David Hilbert,

who asked whether there was an algorithm that could determine whether
an arbitrary mathematical statement is true or false. In contrast to

Shannon’s paper, Turing’s paper is highly technical. Its primary historical
significance lies not in its answer to the decision problem,  but in the

template for computer design it provided along the way.

Turing was working in a tradition stretching back to Gottfried Leibniz, the
philosophical giant who developed calculus independently of Newton.

Among Leibniz’s many contributions to modern thought, one of the most
intriguing was the idea of a new language he called the “universal

characteristic” that, he imagined, could represent all possible
mathematical and scientific knowledge. Inspired in part by the 13th-

century religious philosopher Ramon Llull, Leibniz postulated that the
language would be ideographic like Egyptian hieroglyphics, except

characters would correspond to “atomic” concepts of math and science.
He argued this language would give humankind an “instrument” that

could enhance human reason “to a far greater extent than optical
instruments” like the microscope and telescope.

He also imagined a machine that could process the language, which he
called the calculus ratiocinator.

If controversies were to arise, there would be no more need of disputation
between two philosophers than between two accountants. For it would

suffice to take their pencils in their hands, and say to each other:
Calculemus—Let us calculate.

Leibniz didn’t get the opportunity to develop his universal language or the
corresponding machine (although he did invent a relatively simple

calculating machine, the stepped reckoner). The first credible attempt to
realize Leibniz’s dream came in 1879, when the German philosopher

Gottlob Frege published his landmark logic treatise Begriffsschrift.
Inspired by Boole’s attempt to improve Aristotle’s logic, Frege developed

a much more advanced logical system. The logic taught in philosophy and

 Info Page 5

http://www.macrumors.com/2016/09/12/cpu-improvements-iphone-7-apple-watch/
https://en.wikipedia.org/wiki/Characteristica_universalis
https://en.wikipedia.org/wiki/Characteristica_universalis
https://en.wikipedia.org/wiki/Ramon_Llull
http://publicdomainreview.org/2016/11/10/let-us-calculate-leibniz-llull-and-computational-imagination/
https://en.wikipedia.org/wiki/Stepped_reckoner
https://en.wikipedia.org/wiki/Begriffsschrift

a much more advanced logical system. The logic taught in philosophy and
computer-science classes today—first-order or predicate logic—is only a

slight modification of Frege’s system.

Frege is generally considered one of the most important philosophers of
the 19th century. Among other things, he is credited with catalyzing what

noted philosopher Richard Rorty called the “linguistic turn” in philosophy.
As Enlightenment philosophy was obsessed with questions of knowledge,

philosophy after Frege became obsessed with questions of language. His
disciples included two of the most important philosophers of the 20th

century—Bertrand Russell and Ludwig Wittgenstein.

The major innovation of Frege’s logic is that it much more accurately
represented the logical structure of ordinary language. Among other

things, Frege was the first to use quantifiers (“for every,” “there exists”)
and to separate objects from predicates. He was also the first to develop

what today are fundamental concepts in computer science like recursive
functions and variables with scope and binding.

Frege’s formal language — what he called his “concept-script” — is made up
of meaningless symbols that are manipulated by well-defined rules. The

language is only given meaning by an interpretation, which is specified
separately (this distinction would later come to be called syntax versus

semantics). This turned logic into what the eminent computer scientists
Allan Newell and Herbert Simon called “the symbol game,” “played with

meaningless tokens according to certain purely syntactic rules.”

All meaning had been purged. One had a mechanical system about which
various things could be proved. Thus progress was first made by walking

away from all that seemed relevant to meaning and human symbols.

As Bertrand Russell famously quipped: “Mathematics may be defined as
the subject in which we never know what we are talking about, nor

whether what we are saying is true.”

An unexpected consequence of Frege’s work was the discovery of
weaknesses in the foundations of mathematics. For example, Euclid’s

Elements — considered the gold standard of logical rigor for thousands of

years — turned out to be full of logical mistakes. Because Euclid used
ordinary words like “line” and “point,” he — and centuries of readers — 

deceived themselves into making assumptions about sentences that
contained those words. To give one relatively simple example, in ordinary

usage, the word “line” implies that if you are given three distinct points
on a line, one point must be between the other two. But when you define

“line” using formal logic, it turns out “between-ness” also needs to be
defined—something Euclid overlooked. Formal logic makes gaps like this

easy to spot.

This realization created a crisis in the foundation of mathematics. If the
Elements — the bible of mathematics — contained logical mistakes, what

other fields of mathematics did too? What about sciences like physics that
were built on top of mathematics?

The good news is that the same logical methods used to uncover these
errors could also be used to correct them. Mathematicians started

 Info Page 6

https://en.wikipedia.org/wiki/Stepped_reckoner
https://en.wikipedia.org/wiki/Begriffsschrift
https://en.wikipedia.org/wiki/Linguistic_turn
https://en.wikipedia.org/wiki/Foundations_of_mathematics#Foundational_crisis
https://en.wikipedia.org/wiki/Peano_axioms
https://en.wikipedia.org/wiki/Hilbert%27s_axioms

Completeness: There should be a proof that all true mathematical
statements can be proved in the formal system.

•

Decidability: There should be an algorithm for deciding the truth or
falsity of any mathematical statement. (This is the

“Entscheidungsproblem” or “decision problem” referenced in Turing’s
paper.)

•

errors could also be used to correct them. Mathematicians started

rebuilding the foundations of mathematics from the bottom up. In 1889,
Giuseppe Peano developed axioms for arithmetic, and in 1899, David

Hilbert did the same for geometry. Hilbert also outlined a program to
formalize the remainder of mathematics, with specific requirements that

any such attempt should satisfy, including:

Rebuilding mathematics in a way that satisfied these requirements
became known as Hilbert’s program. Up through the 1930s, this was the

focus of a core group of logicians including Hilbert, Russell, Kurt Gödel,
John Von Neumann, Alonzo Church, and, of course, Alan Turing.

“In science, novelty emerges only with difficulty.”

Hilbert’s program proceeded on at least two fronts. On the first front,
logicians created logical systems that tried to prove Hilbert’s requirements

either satisfiable or not.

On the second front, mathematicians used logical concepts to rebuild
classical mathematics. For example, Peano’s system for arithmetic starts

with a simple function called the successor function which increases any
number by one. He uses the successor function to recursively define

addition, uses addition to recursively define multiplication, and so on,
until all the operations of number theory are defined. He then uses those

definitions, along with formal logic, to prove theorems about arithmetic.

The historian Thomas Kuhn once observed that “in science, novelty
emerges only with difficulty.” Logic in the era of Hilbert’s program was a

tumultuous process of creation and destruction. One logician would build
up an elaborate system and another would tear it down.

The favored tool of destruction was the construction of self-referential,
paradoxical statements that showed the axioms from which they were

derived to be inconsistent. A simple form of this “liar’s paradox” is the
sentence:

This sentence is false.

If it is true then it is false, and if it is false then it is true, leading to an
endless loop of self-contradiction.

Russell made the first notable use of the liar’s paradox in mathematical
logic. He showed that Frege’s system allowed self-contradicting sets to be

derived:

Let R be the set of all sets that are not members of themselves. If R is
not a member of itself, then its definition dictates that it must contain

itself, and if it contains itself, then it contradicts its own definition as the
set of all sets that are not members of themselves.

 Info Page 7

https://en.wikipedia.org/wiki/Peano_axioms
https://en.wikipedia.org/wiki/Hilbert%27s_axioms
https://en.wikipedia.org/wiki/Peano_axioms#Addition
https://en.wikipedia.org/wiki/Peano_axioms#Multiplication

set of all sets that are not members of themselves.

This became known as Russell’s paradox and was seen as a serious flaw
in Frege’s achievement. (Frege himself was shocked by this discovery. He

replied to Russell: “Your discovery of the contradiction caused me the
greatest surprise and, I would almost say, consternation, since it has

shaken the basis on which I intended to build my arithmetic.”)

Russell and his colleague Alfred North Whitehead put forth the most
ambitious attempt to complete Hilbert’s program with the Principia

Mathematica, published in three volumes between 1910 and 1913. The
Principia’s method was so detailed that it took over 300 pages to get to

the proof that 1+1=2.

Russell and Whitehead tried to resolve Frege’s paradox by introducing
what they called type theory. The idea was to partition formal languages

into multiple levels or types. Each level could make reference to levels
below, but not to their own or higher levels. This resolved self-referential

paradoxes by, in effect, banning self-reference. (This solution was not
popular with logicians, but it did influence computer science — most

modern computer languages have features inspired by type theory.)

Self-referential paradoxes ultimately showed that Hilbert’s program could
never be successful. The first blow came in 1931, when Gödel published

his now famous incompleteness theorem, which proved that any
consistent logical system powerful enough to encompass arithmetic must

also contain statements that are true but cannot be proven to be true.
(Gödel’s incompleteness theorem is one of the few logical results that has

been broadly popularized, thanks to books like Gödel, Escher, Bach and
The Emperor’s New Mind).

The final blow came when Turing and Alonzo Church independently
proved that no algorithm could exist that determined whether an arbitrary

mathematical statement was true or false. (Church did this by inventing
an entirely different system called the lambda calculus, which would later

inspire computer languages like Lisp.) The answer to the decision problem
was negative.

Turing’s key insight came in the first section of his famous 1936 paper,
“On Computable Numbers, With an Application to the

Entscheidungsproblem.” In order to rigorously formulate the decision
problem (the “Entscheidungsproblem”), Turing first created a

mathematical model of what it means to be a computer (today, machines
that fit this model are known as “universal Turing machines”). As the

logician Martin Davis describes it:

Turing knew that an algorithm is typically specified by a list of rules that a
person can follow in a precise mechanical manner, like a recipe in a

cookbook. He was able to show that such a person could be limited to a
few extremely simple basic actions without changing the final outcome of

the computation.

Then, by proving that no machine performing only those basic actions
could determine whether or not a given proposed conclusion follows from

given premises using Frege’s rules, he was able to conclude that no

 Info Page 8

https://en.wikipedia.org/wiki/G%C3%B6del,_Escher,_Bach
https://www.amazon.com/dp/B00ARGXG7Q/ref=dp-kindle-redirect?_encoding=UTF8&btkr=1
https://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/Lisp_%28programming_language%29

given premises using Frege’s rules, he was able to conclude that no
algorithm for the Entscheidungsproblem exists.

As a byproduct, he found a mathematical model of an all-purpose
computing machine.

Next, Turing showed how a program could be stored inside a computer
alongside the data upon which it operates. In today’s vocabulary, we’d

say that he invented the “stored-program” architecture that underlies
most modern computers:

Before Turing, the general supposition was that in dealing with such
machines the three categories — machine, program, and data — were

entirely separate entities. The machine was a physical object; today we
would call it hardware. The program was the plan for doing a

computation, perhaps embodied in punched cards or connections of
cables in a plugboard. Finally, the data was the numerical input. Turing’s

universal machine showed that the distinctness of these three categories
is an illusion.

This was the first rigorous demonstration that any computing logic that
could be encoded in hardware could also be encoded in software. The

architecture Turing described was later dubbed the “Von Neumann
architecture” — but modern historians generally agree it came from Turing,

as, apparently, did Von Neumann himself.

Although, on a technical level, Hilbert’s program was a failure, the efforts
along the way demonstrated that large swaths of mathematics could be

constructed from logic. And after Shannon and Turing’s insights—showing
the connections between electronics, logic and computing—it was now

possible to export this new conceptual machinery over to computer
design.

During World War II, this theoretical work was put into practice, when
government labs conscripted a number of elite logicians. Von Neumann

joined the atomic bomb project at Los Alamos, where he worked on
computer design to support physics research. In 1945, he wrote the

specification of the EDVAC—the first stored-program, logic-based
computer—which is generally considered the definitive source guide for

modern computer design.

Turing joined a secret unit at Bletchley Park, northwest of London, where
he helped design computers that were instrumental in breaking German

codes. His most enduring contribution to practical computer design was
his specification of the ACE, or Automatic Computing Engine.

As the first computers to be based on Boolean logic and stored-program
architectures, the ACE and the EDVAC were similar in many ways. But

they also had interesting differences, some of which foreshadowed
modern debates in computer design. Von Neumann’s favored designs

were similar to modern CISC (“complex”) processors, baking rich
functionality into hardware. Turing’s design was more like modern RISC

(“reduced”) processors, minimizing hardware complexity and pushing
more work to software.

 Info Page 9

https://en.wikipedia.org/wiki/Alan_Turing#cite_note-36
http://www.virtualtravelog.net/wp/wp-content/media/2003-08-TheFirstDraft.pdf

Von Neumann thought computer programming would be a tedious,
clerical job. Turing, by contrast, said computer programming “should be

very fascinating. There need be no real danger of it ever becoming a
drudge, for any processes that are quite mechanical may be turned over

to the machine itself.”

Since the 1940s, computer programming has become significantly more
sophisticated. One thing that hasn’t changed is that it still primarily

consists of programmers specifying rules for computers to follow. In
philosophical terms, we’d say that computer programming has followed in

the tradition of deductive logic, the branch of logic discussed above,
which deals with the manipulation of symbols according to formal rules.

In the past decade or so, programming has started to change with the
growing popularity of machine learning, which involves creating

frameworks for machines to learn via statistical inference. This has
brought programming closer to the other main branch of logic, inductive

logic, which deals with inferring rules from specific instances.

Today’s most promising machine learning techniques use neural
networks, which were first invented in 1940s by Warren McCulloch and

Walter Pitts, whose idea was to develop a calculus for neurons that could,
like Boolean logic, be used to construct computer circuits. Neural

networks remained esoteric until decades later when they were combined
with statistical techniques, which allowed them to improve as they were

fed more data. Recently, as computers have become increasingly adept at
handling large data sets, these techniques have produced remarkable

results. Programming in the future will likely mean exposing neural
networks to the world and letting them learn.

This would be a fitting second act to the story of computers. Logic began
as a way to understand the laws of thought. It then helped create

machines that could reason according to the rules of deductive logic.
Today, deductive and inductive logic are being combined to create

machines that both reason and learn. What began, in Boole’s words, with
an investigation “concerning the nature and constitution of the human

mind,” could result in the creation of new minds—artificial minds—that
might someday match or even exceed our own.

 Info Page 10

http://www.cse.chalmers.se/~coquand/AUTOMATA/mcp.pdf

